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Abstract. In the color-string model, the impact of string percolation on multiplicities, 〈p2
T〉, and their

long-range (forward–backward) correlations is studied. It is assumed that different string overlaps produce
the observed hadrons independently. The multiplicities are shown to be damped by a simple factor which
follows from the percolation theory. The 〈p2

T〉 rise at the same rate as multiplicities fall. A clear signature
of the percolation phase transition is found to be the behavior of the forward–backward correlations for
intensive quantities, such as 〈p2

T〉 or its inverse, which can be detected in the relativistic heavy-ion collider.

1 Introduction

Multiparticle production at high energies is currently (and
successfully) described in terms of color strings stretched
between the projectile and target [1–6]. Hadronization of
these strings produces the observed hadrons. Color strings
may be viewed as (small) areas in the transverse space
filled with color field created by the colliding partons. Par-
ticles are created via emission of qq̄ pairs in this field.
With growing energy and/or atomic number of colliding
particles, the number of strings grows. Once strings have
a certain nonzero dimension in the transverse space they
start to overlap, forming clusters, very much like disks in
the two-dimensional percolation theory. The geometrical
behavior of strings in the transverse plane then follows
that of percolating discs. In particular, at a certain crit-
ical string density a macroscopic cluster appears (that is
infinite in the thermodynamic limit), which marks the per-
colation phase transition [7–9].

The percolation theory governs the geometrical pat-
tern of the string clustering. Its observable implications,
however, require introduction of some dynamics to de-
scribe string interaction, i.e., the behavior of a cluster
formed by several overlapping strings.

One can study several different possibilities.
The most naive attitude is to assume that nothing

happens as strings overlap; in other words, they continue
to emit particles independently without being affected by
their overlapping neighbors. This is a scenario of noninter-
acting strings that closely corresponds to original calcu-
lations in the color-string approach, oriented at compar-
atively small energies (and numbers of strings). However,
this scenario contradicts the idea that strings are areas of
the transversal space filled with color field and thus with
energy, since in the overlapping areas the energy should
have grown.

In another limiting case, one may assume that a clus-
ter of several overlapping strings behaves as a single string
with an appropriately higher color field (a string of higher
color, or a “color rope”. [10]). This fusion scenario was pro-
posed by the authors and later realized as a Monte Carlo
algorithm nearly a decade ago [11,12]. It predicts lowering
of total multiplicities and forward–backward correlations
(FBC) and also strange-baryon enhancement, all of which
are in reasonable agreement with the known experimental
trends.

However, both discussed scenarios are obviously of a
limiting sort. In a typical situation, strings overlap only
partially, and there is no reason to expect them to fuse
into a single stringy object, especially if the overlap is
small. The transverse space occupied by a cluster of over-
lapping strings splits into a number of areas in which dif-
ferent numbers of strings overlap, including areas where
no overlapping takes place. In each such area color fields
coming from the overlapping strings will add together. As
a result, the total cluster area is split in domains with dif-
ferent color- field strength. As a first approximation, ne-
glecting the interaction at the domain frontiers, one may
assume that emission of qq̄ pairs in the domains proceeds
independently, governed by the field strength (“the string
tension”) in a given domain. This picture implies that clus-
tering of strings actually leads to their proliferation, rather
than fusion, since each particular overlap may be consid-
ered as a separate string. Evidently newly formed strings
differ not only in their colors but also in their transverse
areas.

As a simple example, consider a cluster of two par-
tially overlapping strings (Fig. 1). One distinguishes three
different regions: regions 1 and 2, where no overlapping
takes place and the color field remains the same as in a
single string, and the overlap region 3 with color fields of
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Fig. 1. Projections of two overlapping strings onto the trans-
verse plane

both strings summed. In our picture, particle production
will proceed independently from these three areas, that
is from three different strings corresponding to areas 1,
2, and 3. In this sense, string interaction has split two
strings into three of different color, area, and form in the
transverse space.

We stress that these dynamical assumptions are rather
independent of the geometrical picture of clusterization. In
particular, in each of the scenarios discussed above, at a
certain string density there occurs the percolation phase
transition. However its experimental signatures crucially
depend on the dynamical contents of string interaction.
With no interaction, clustering does not change physical
observables, so that the geometric percolation will not be
felt at all. With the interaction between strings turned
on, clustering (and percolation) lead to well observable
implications.

In this paper, we shall study these implications for the
simplest observables, such as multiplicities, average trans-
verse momenta, and FBC, in the realistic scenario dis-
cussed above, which corresponds to independent particle
production from different overlap domains. Our choice of
observables is dictated by the possibility of relating them
directly to the domain properties without introducing any
more assumptions.

2 Multiplicity and 〈p2
T〉 for overlapping strings

As was stated in the introduction, the central dynami-
cal problem is to find how the observables change when
several strings form a partially overlapping cluster. In the
overlap areas the color fields of individual strings are
summed together. It is more convenient to sum the charges
which generate the color field of overlapping strings.

Let only two strings, each of area σ0 in the transverse
space, partially overlap in the area S2 (region 3 in Fig. 1),
so that S1 = σ0 −S2 is the area in each string not overlap-
ping with the other. In the following, it will be called the
overlap area of one string. A natural assumption seems to
be that the average color density ξ of the string in the

transverse plane is a constant,

ξ = Q0/σ0, (1)

where Q0 is a color of the string. For partially overlapping
strings, the color in each of the two nonoverlapping areas
will then be

Q1 = ξS1 = Q0(S1/σ0). (2)

The color in the overlap area Q2 will be a vector sum
of the two overlapping colors ξS2. In this summation, the
total color squared should be conserved [10]. Indeed, Q2

2 =
(Qov+Q′

ov)
2 where Qov and Q′

ov are the two vector colors
in the overlap area. Since the colors in the two strings may
generally be oriented in an arbitrary manner respective to
one another, the average of QovQ′

ov is zero. Then Q2
2 =

Q2
ov +Q′

ov
2, which leads to

Q2 =
√
2 ξS2 =

√
2Q0(S2/σ0). (3)

One observes that because of its vector nature, the color
in the overlap is less than the sum of the two overlapping
colors. This phenomenon was first mentioned in [10] for
the so-called color ropes.

The two simplest observables, the multiplicity µ and
the average transverse momentum squared 〈p2

T〉, are di-
rectly related to the field strength in the string and thus
to its generating color. In fact they are both proportional
to the color [10,13]. Thus, assuming independent emission
from the three regions 1, 2, and 3 in Fig. 1, we get for the
multiplicity:

µ/µ0 = 2(S1/σ0) +
√
2 (S2/σ0), (4)

where µ0 is a multiplicity for a single string. To find 〈p2
T〉,

one has to divide the total transverse momentum squared
of all observed particles by the total multiplicity. In this
way, for our cluster of two strings, we obtain

〈p2
T〉/〈p2

T〉0 =
2(S1/σ0) +

√
2
√
2 (S2/σ0)

2(S1/σ0) +
√
2 (S2/σ0)

=
2

2(S1/σ0) +
√
2 (S2/σ0)

, (5)

where 〈p2
T〉0 is the average transverse momentum squared

for a single string and we have used the evident property
2S1 + 2S2 = 2σ0 in the second equality.

Generalizing to any number N of overlapping strings,
we find the total multiplicity as

µ/µ0 =
∑

i

√
ni (S(i)/σ0), (6)

where the sum goes over all individual overlaps i of ni

strings having areas S(i). Similarly for the 〈p2
T〉, we obtain

〈p2
T〉/〈p2

T〉0 =
∑

i ni (S(i)/σ0)∑
i

√
ni (S(i)/σ0)

=
N∑

i

√
ni (S(i)/σ0)

. (7)
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In the second equality, we again use an evident identity∑
i ni S

(i) = Nσ0. Note that (6) and (7) imply a simple
relation between the multiplicity and transverse momen-
tum

µ

µ0

〈p2
T〉

〈p2
T〉0 = N, (8)

which evidently means conservation of the total transverse
momentum produced.

Equations (6) and (7) do not appear to be easy to ap-
ply. To calculate the sums over i, one seems to have to
identify all individual overlaps of any number of strings
with their areas. For a large number of strings, the lat-
ter may have very complicated forms, and their analysis
presents great calculational difficulties. However, one im-
mediately recognizes that such individual tracking of over-
laps is not at all necessary. One can combine all terms with
a given number of overlapping strings ni = n into a sin-
gle term, which sums all such overlaps into a total area of
exactly n overlapping strings Sn. Then one finds, instead
of (6) and (7),

µ/µ0 =
N∑

n=1

√
n (Sn/σ0) (9)

and
〈p2

T〉/〈p2
T〉0 =

N∑N
n=1

√
n (Sn/σ0)

. (10)

In contrast to individual overlap areas S(i), the total
ones Sn can be easily calculated (see the appendix). Let
the projections of the strings onto the transverse space
be distributed uniformly in the interaction area S with a
density ρ. We introduce a dimensionless parameter

η = ρσ0 = Nσ0/S. (11)

The “thermodynamic limit” corresponds to taking the
number of the strings N → ∞ and keeping η fixed. In
this limit, one readily finds that the distribution of the
overlaps of n strings is Poissonian, with a mean value η:

pn =
Sn

S
=

ηn

n!
e−η. (12)

From (9) we then find that the multiplicity is damped
because of overlapping by a factor

F (η) =
µ

Nµ0
=

〈√n〉
η

, (13)

where the average is taken over the Poissonian distribution
(12).

The behavior of F (η) is shown in Fig. 2. It smoothly
goes down from unity at η = 0 to values around 0.5 at
η = 4, falling as 1/

√
η for larger η. According to (10),

the inverse of F shows the rise of 〈p2
T〉. Note that a crude

estimate of F (η) can be done from the overall compression
of the string area due to overlapping. The fraction of the
total area occupied by the strings according to (12) (see
also [14]) is given by∑

n=1

pn = 1 − e−η. (14)
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Fig. 2. Damping of the multiplicity as a function of η

The compression is given by (14) divided by η. According
to our picture, the multiplicity is damped by the square
root of the compression factor, so that the damping factor
is

F (η) =

√
1 − e−η

η
. (15)

For all the seeming crudeness of this estimate, (15) is very
close to the exact result as shown in Fig. 2 by a dashed
curve.

3 Percolation

Percolation is a purely classical mechanism. Overlapping
strings form clusters. At some critical value of the parame-
ter η, a phase transition of the 2nd order occurs: A cluster
appears which extends over the whole surface (an infinite
cluster in the thermodynamic limit). The critical value of
η is found to be ηc � 1.12–1.20 [15]. Below the phase tran-
sition point, for η < ηc, there is no infinite cluster. Above
the transition point, at η > ηc an infinite cluster appears
with a probability

P∞ = θ(η − ηc)(η − ηc)β . (16)

The critical exponent β can be calculated from Monte
Carlo simulations. However, the universality of critical be-
havior, that is, its independence of the percolating sub-
strate, allows us to borrow its value from lattice percola-
tion, where β = 5/36.

Cluster configuration can be characterized by the oc-
cupation numbers 〈νn〉, the average numbers of clusters
made of n strings. Their behavior at all values of η and n
is not known. From scaling considerations in the vicinity
of the phase transition, it has been found [24] that

〈νn〉 = n−τF (nσ(η − ηc)), |η − ηc| << 1, n >> 1, (17)
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where τ = 187/91 and σ = 36/91 and the function F (z)
is finite at z = 0 and falls off exponentially for |z| → ∞.
Equation (17) is of limited value, since near η = ηc the
bulk of the contribution is still supplied by low values of
n, for which (14) is not valid. However, from (17), one
can find nonanalytic parts of other quantities of interest
at the transition point. In particular, one finds a singu-
lar part of the total number of clusters M =

∑
νn as

∆〈M〉 = c|η − ηc|8/3. This singularity is quite weak: Not
only 〈M〉 itself but also its two first derivatives in η stay
continuous at η = ηc, and only the third blows up as
|η−ηc|−1/3. So one should not expect that the percolation
phase transition will be clearly reflected in some peculiar
behavior of standard observables.

Indeed, we have observed that neither the total mul-
tiplicity nor 〈p2

T〉 show any irregularity in the vicinity of
the phase transition, that is, at η around unity. This is
not surprising, since both quantities reflect the overlap
structure rather than the cluster one. The connectedness
property implied in the latter has no effect on these global
observables.

It is remarkable, however, that the fluctuations of these
observables carry some information about the phase tran-
sition. The dispersion of the multiplicity due to overlap-
ping and clustering can easily be calculated in the ther-
modynamic limit (see the appendix). The result is shown
in Fig. 3. The dispersion shows a clear maximum around
η = 1 (in fact at η � 0.7). So some information of the per-
colation phenomenon is passed to the total multiplicity,
in spite of the fact that it basically does not feel the con-
nectedness properties of the formed clusters. Of course,
due to relation (10), the dispersion of 〈p2

T〉 has a similar
behavior.

We have to warn against a simplistic interpretation of
this result. The dispersion shown in Fig. 3 is only part of
the total one, which includes also contributions from the
fluctuations inside the strings and also in their number.

Below we shall discuss the relevance and magnitude of
these extra contributions.

An intriguing question is the relation between the per-
colation and formation of the quark–gluon plasma. For-
mally, these phenomena are different. Percolation is re-
lated to the connectedness property of the strings. The
(cold) quark–gluon plasma formation is related to the den-
sity of the produced particles (or, equivalently, the density
of their transverse energy ). However, in practice, per-
colation and plasma formation go together. In fact, the
transverse energy density inside a single string seems to
be sufficient for the plasma formation. Percolation makes
the total area occupied by strings comparable to the total
interaction area, thus creating a sizeable area with energy
densities above the plasma formation threshold.

Let us make some crude estimates. Comparison with
the observed multiplicity densities in pp(p̄) collisions at
present energies fix the number of produced (charged)
particles per string per unit rapidity at approximately
unity. Taking the average energy of each particle as 0.4
GeV (which is certainly a lower bound), the formation
length in the Bjorken formula [16] as 1 fm, and the string
transverse radius as 0.2 fm [7], we get the three- dimen-
sional transverse energy density inside the string as ∼
3GeV/fm3. The plasma threshold is currently estimated to
be at 1GeV/fm3. So it is tempting to say that the plasma
already exists inside strings. This has little physical sense,
however, because of a very small area occupied by a string.
One can speak of a plasma only when the total area oc-
cupied by a cluster of strings reaches a sizeable fraction
of the total interaction area. In Fig. 4, we show this frac-
tion for a maximal cluster as a function of η calculated
by Monte Carlo simulations in a system of 50 strings. It
grows with η and the fastest growth occurs precisely in
the region of the percolation phase transition: As η grows
from 0.8 to 1.2, the fraction grows from 0.3 to 0.6. With a
string cluster occupying more than half of the interacting
area, one can safely speak of a plasma formed in that area.

4 Dispersions and forward–backward
correlations

As shown in the previous section, a definite signal for the
percolation phase transition comes from the multiplicity
(or 〈p2

T〉) fluctuations due to string clustering. However,
these fluctuations are not the only ones. An important
contribution also comes from the fluctuations of the mul-
tiplicity inside the strings, or rather inside the individual
overlaps of strings, which in our picture play the role of
independent particle emitters. To find the total disper-
sion, it is convenient to use a formalism of the generating
functions. Let the total probability to observe n produced
particles be P(n). In our picture, it is given by a convo-
lution of the probability for a given overlap configuration
P (C) with the probabilities for particle production from
all individual overlaps:

P(n) =
∑
C

P (C)
∑

n1,...,nM

p1(n1)...pM (nM )δn,
∑

ni
. (18)
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Here C is a “configuration”, characterized by the total
number of the overlaps M and their individual properties,
the area and number of overlapping strings. We pass to
generating functions

Φ(z) =
∑

n

znP(n), φi(z) =
∑

n

znpi(n), (19)

for which (18) transforms into

Φ(z) =
∑
C

P (C)
∏

i

φi(z). (20)

The overall averages (with the probability P) are given by

〈n〉 = Φ′(z)z=1, 〈n(n − 1)〉 = Φ′′(z)z=1. (21)

The averages inside the ith overlap are likewise given by

ni = φ′(z)z=1, ni(ni − 1) = φ′′(z)z=1. (22)

Using this formula, one readily finds the total dispersion
of multiplicity as a sum of two terms,

D2 = D2
C +D2

in. (23)

Here D2
C is a dispersion due to fluctuation in configura-

tions

D2
C =

∑
C

P (C)
∑
ik

ni nk − (
∑
C

P (C)
∑

i

ni)2. (24)

It is calculated according to the distribution P with the
assumption that the numbers of particles produced in in-
dividual overlaps are fixed to be their averages. It is this
part of the dispersion which is calculated in the appendix

and presented in Fig. 3. The part D2
in is a part of the dis-

persion due to fluctuations inside the individual overlaps:

D2
in =

∑
C

P (C)
∑

i

(n2
i − (ni)2). (25)

Its calculation is extremely difficult even in Monte Carlo
simulations, since it requires identification of all individ-
ual overlaps and knowledge of their areas. To simplify, we
assume that the distribution of produced particles from
any overlap is Poissonian, so that n2

i − (ni)2 = ni. Then
we find

D2
in = µ. (26)

From the experimental data, we estimate µ0 � 1.1 for
the unit rapidity interval. Comparison of Fig. 2 and Fig. 3
then shows that for the unit rapidity interval, the inter-
nal dispersion D2

in is roughly 40 times greater than the
“percolation dispersion” D2

C at η = 0.7 corresponding to
the maximum for the latter. At other η, the ratio D2

in/D
2
C

is still greater. With the growth of the rapidity interval,
this ratio diminishes proportionally. However, it is obvious
that one should not expect to clearly see the percolation
effects directly in the observed multiplicities.

A better signal for the percolation comes from the
FBC, which, as we shall see, distinguish between the per-
colation and intrinsic dispersions (in fact, they depend on
their ratio). The FBC are described by the dependence of
the average multiplicity in the backward hemisphere 〈µB〉
on the event multiplicity in the forward hemisphere µF.
The data can be fitted by a linear expression [1]

〈µB〉 = a+ bµF, (27)

where a and b are given by expectation values

a =
〈µB〉〈µ2

F〉 − 〈µFµB〉〈µF〉
〈µ2

F〉 − 〈µF〉2 , (28)



354 M.A. Braun, C. Pajares: Percolation, multiplicities, 〈p2
T〉, and correlations

b =
〈µFµB〉 − 〈µF〉〈µB〉

〈µ2
F〉 − 〈µF〉2 . (29)

In absence of the FBC, 〈µFµB〉 = 〈µF〉〈µB〉, and one ob-
tains a = 〈µF〉 and b = 0. Hence the strength of the cor-
relations is given by the coefficient b.

To calculate the necessary averages, we introduce the
probability P(F,B) to produce F (B) particles in the for-
ward (backward) hemispheres. Similarly to (18) it is given
by a convolution

P(F,B) =
∑
C

P (C)
∑

Fi,Bi

∏
i

pi(Fi, Bi)δF,
∑

Fi
δB,
∑

Bi
,

(30)
which transforms into a relation between the generating
functions

Φ(zF, zB) =
∑
C

P (C)
∏

i

φ(zF, zB). (31)

Instead of (21), we now have

〈F 〉 =
(
∂Φ

∂zF

)
zF=zB=1

, 〈F (F − 1)〉 =
(
∂2Φ

∂z2
F

)
zF=zB=1

,

〈FB〉 =
(

∂2Φ

∂zF∂zB

)
zF=zB=1

, (32)

formulas similar to the first two for B, and similar for-
mulas for the averages over the distributions pi inside the
overlap i with the generating function φi(zF, zB). Using
these formulas, we find that the dispersions again split
into the percolation (C) and internal (in) parts.

D2
F = D2

F,C +D2
F,in,

D2
FB ≡ 〈FB〉 − 〈F 〉〈B〉 = D2

FB,C +D2
FB,in. (33)

They are given by

D2
F,C =

∑
C

P (C)
∑
i,k

Fi Fk − (
∑
C

P (C)
∑

i

Fi)2, (34)

D2
FB,C =

∑
C

P (C)
∑
i,k

Fi Bk

−
∑
C

P (C)
∑

i

Fi

∑
C

P (C)
∑

i

Bi, (35)

D2
F,in =

∑
C

P (C)
∑

i

(F 2
i − (Fi)2), (36)

D2
FB,in =

∑
C

P (C)
∑

i

(FiBi − Fi Bi). (37)

The usual assumption is that there are no forward–
backward correlations for particle production from a single
emitter (overlap i in our case). Then D2

FB,in = 0. Also,
from n = F +B, one can relate these dispersions with the
overall ones D2

C and D2
in:

D2
F,C = D2

FB,C = (1/4)D2
C, D2

F,in = (1/2)D2
in. (38)
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From (29), one then finds

1
b
= 1 + 2

D2
in

D2
C
. (39)

So, the FBC parameter b indeed measures the ratio of
internal to percolation dispersions squared. If we assume
that the distribution of particles produced from an indi-
vidual overlap is Poissonian, then (39) transforms into

1
b
= 1 + 2

µ

D2
C
. (40)

Both µ and D2
C grow linearly with the number of

strings N , so in the thermodynamic limit, b does not de-
pend on N . However, it depends on the multiplicity of a
single string µ0, since µ is proportional to µ0 and D2

C is
proportional to µ2

0. As has been mentioned, we find from
the experimental data that µ0 � 1.1 y, where y is the ra-
pidity interval of the produced particles. So the right-hand
side of (40) falls with the growth of the rapidity window.
It also has a minimum at η ∼ 0.7 corresponding to the
maximum D2

C. From this we see that the FBC parameter
b also has a maximum near η ∼ 0.7, whose magnitude
grows with the rapidity interval. In Fig. 5, we show the
behavior of b as a function of η for two rapidity intervals
y = 5 and y = 9.

One can also study the FBC for 〈p2
T〉. Owing to rela-

tion (8), for fixed N they are uniquely determined by the
fluctuations in µ. It is convenient to choose the inverse
〈p2

T〉 as an observable:

τ =
µ0〈p2

T〉0
〈p2

T〉 =
µ

N
. (41)

Then it is obvious that the parameter b for τ is the same
as for the multiplicity, since both percolation and internal
dispersions for τ are obtained from those for µ, divided by
N . However this equivalence holds only for a fixed number
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of strings N . In the realistic situation, N fluctuates. The
multiplicity is an extensive observable and carries these
fluctuations directly. The result is that they are large and
smear out nearly all traces of percolation. In contrast, τ is
an intensive observable and so feels the fluctuation in N
only indirectly, through the fluctuations in the parameter
η. As a result, the percolation effects for the FBC in τ are
clearly visible, as we shall see in the next section.

5 Realistic hadronic and nuclear collisions

For realistic hadronic and nuclear collisions, the total
number of strings N grows with energy and fluctuates.
For pp collisions, the initial number of color strings N
created at a given c.m. energy

√
s can be taken from the

well-known calculations of [1,2]. For pA and AB collisions,
this number should be multiplied by the effective number
of collisions C. At asymptotic energies for minimum-bias
hA and AB collisions, the AGK rules predict

CA = Aσ/σA, CAB = ABσ/σAB, (42)

where σ (σA, σAB) is the inelastic pp (pA, AB) cross
section. For hA collisions at fixed impact parameter b,

CA = AσTA(b)/(1 − exp(−AσTAB)), (43)

where TA is the standard nuclear profile function (normal-
ized to unity). The same relation holds for AB collisions
in the optical approximation with

A → AB, TA → TAB(b) =
∫

d2c TA(c)TB(b − c). (44)

The transverse interaction area for pp and hA colli-
sions obviously is of the order σ. For AB collisions, it de-
pends on the geometry of the collisions. We restrict our-
selves to central (b = 0) collisions of identical nuclei, when
evidently the interaction area is σAA. The parameter η
is then calculated according to (11). We have taken the
string area σ0 as

σ0 = πa2, a = 0.2 fm. (45)

in accordance with arguments presented in [7]. To re-
late the multiplicity to the experimental data, we nor-
malized µ to the observable central (charged) multiplic-
ity per unit rapidity in pp collisions at low energies. This
fixes µ0 for the unit rapidity to be 1.1. The found values
of µ ≡ (dnch/dy)y=0 are presented in the table for cen-
tral S–S and Pb–Pb collisions (fourth column) together
with the corresponding values of c.m. energy

√
s, η, and

number of strings N (first, second, and third columns, re-
spectively). To compare, we present the values of µ found
without fusion and percolation (independent-string pic-
ture) in the seventh column. One should have in mind
that the asymptotic formulas for the number of collisions
(42)–(44) used to determine the number of strings are not
valid at comparatively low energies because of restrictions
imposed by energy conservation. As stated in [1], at lower

Table 1. Columns show, from left to right: c.m. energy per nu-
cleon

√
s; parameter η (1); number of initially produced strings

N ; central charged multiplicity per unit rapidity µ and its FBC
parameter B(µ); the FBC parameter for the inverse 〈p2

T〉, b(τ);
and the multiplicities and b(µ) in the independent-string model
(subscript 0)

S–S scattering (b = 0)√
s η N µ b(µ) b(τ) µ0 b0

19.4 0.33 99 101 0.67 0.04 111 0.65
62.5 0.47 143 140 0.74 0.08 160 0.72
200 0.65 198 185 0.79 0.13 221 0.77
546 0.84 255 228 0.82 0.18 284 0.80
1800 1.10 336 283 0.85 0.24 374 0.82
7000 1.47 448 349 0.87 0.30 499 0.85

Pb–Pb scattering (b = 0)√
s η N µ b(µ) b(τ) µ0 b0

19.4 1.45 1530 1200 0.69 0.13 1700 0.65
62.5 2.09 2200 1530 0.75 0.19 2450 0.72
200.0 2.88 3040 1870 0.78 0.25 3390 0.77
546.0 3.72 3920 2170 0.80 0.28 4370 0.80
1800.0 4.90 5170 2530 0.81 0.31 5760 0.82
7000.0 6.53 6890 2940 0.82 0.33 7680 0.85

energies, the number of collisions can be roughly obtained
by the multiplication of (42)– (44) by a factor of 1/2. Cor-
respondingly, our values for the multiplicity at two lower
energies have to be corrected for energy conservation by a
factor of this order. We preferred not to make this correc-
tion, since, in any case, it cannot be determined with any
degree of rigor, and the effects we are considering are es-
sential only at high enough energies, where (42)–(44) are,
as we hope, valid.

As we observe, percolation considerably damps the
multiplicity at high energies, from nearly 8000 at

√
s =

7000 GeV for central Pb–Pb collision down to approxi-
mately 3000. This effect was predicted in our earlier papers
on string fusion [11,12] and is now reproduced in various
models [17].

As to the FBC, we studied them both for the mul-
tiplicity and the inverse 〈p2

T〉 (in fact for the observable
τ , defined in (41)). We have taken one half of the total
rapidity available for the relevant rapidity window. The
“external” dispersion in the denominator of (39) has to
include also the fluctuations in the number of strings. We
have assumed the overall distribution in N to be Poisso-
nian, so that ∆N/N = 1/

√
N . As has been mentioned, for

the multiplicity, because of its extensive character, the dis-
persion in N simply adds to DC. It is large and absolutely
dominates all other contributions. So it is no surprise that
the coefficient b for the multiplicity with percolation (fifth
column in the table) differs only slightly from the one
without percolation (eighth column).

In contrast, for τ , the fluctuations in N only enter
via the dependence of η on N . The result is that they
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are smaller than the percolation contribution at the max-
imum of the latter but fall with η more slowly, so that
they dominate at large η. As a result, the characteristic
peaked form of the parameter b found at fixed N (Fig. 5)
disappears and b results steadily growing with η (sixth col-
umn in the table). However, one should note that in the
independent-string picture, the parameter b for τ is zero,
since the dependence on N is then completely absent. So
experimental study of the FBC for inverse 〈p2

T〉 seems to
be a promising way to observe signatures of string fusion
and percolation.

6 Conclusions

In this study, we have analyzed the impact of fusion and
percolation of color strings on global observables, such as
multiplicities and 〈p2

T〉. To do this, a certain dynamical as-
sumption has been made. The strings have been assumed
to decay into the observed hadrons independently in each
overlap.

On the qualitative level, the results are best seen in the
idealized case of a fixed number of strings N >> 1 (equiv-
alent to plasma studies in the thermodynamic limit). A
clear consequence of fusion and percolation is damping of
the multiplicities, which is well described by a damping
factor (15) that follows from the percolation theory. An
unexpected but potentially important result is that the
parameter b of the FBC shows a clear maximum at the
percolation point. Such a maximum would be natural in
fluctuations, of, e.g., the cluster sizes, where it is to be ex-
pected as a signature of the percolation phase transition.
However, multiplicities do not seem to feel directly the
cluster structure, so that the appearance of the maximum
in their fluctuations is a new result.

In the realistic case of nuclear collisions, where N fluc-
tuates, the predicted multiplicities repeat the pattern ob-
served at fixed N and are damped by the same factor
(15). At LHC energies, it reduces the multiplicities by
more than two times. However, the parameter b for mul-
tiplicity is completely dominated by fluctuations in the
number of strings and so is only slightly different from
the one in the independent-string picture. A better (in-
tensive) observable for seeing the impact of percolation
is 〈p2

T〉 or its inverse, for which the contribution of the
fluctuations in N is drastically reduced. For 〈p2

T〉−1 we
predict sizeable values of b to be contrasted with b = 0
in the independent-string picture. Observation of nonzero
values of b for 〈p2

T〉−1 would therefore be a clear signature
of string fusion and percolation.
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Appendix
Multiplicities and their dispersion

Let us recall the geometry of our percolation picture. Discs
of radius a and area σ0 = πa2 are homogeneously dis-
tributed in the total area S. It is assumed that centers
of the discs are inside the unit circle of area S0 = π so
that S = π(1 + a)2. The disc density is ρ = N/S, and the
percolation parameter is η = ρσ0 = Nσ0/S. In the ther-
modynamic limit, N → ∞, so that at fixed η, the radius
of the discs goes to zero. For fixed η,

a =

(√
N

η
− 1

)−1

, (46)

so that at large N , a ∼ 1/
√
N and σ0 ∼ 1/N . Since the

discs are distributed homogeneously, the probability that
their centers are at points ri (i = 1, ..., N) inside the unit
circle is independent of ri and is given by

P (ri) = S−N
0 . (47)

Let us take a configuration which corresponds to the
disc centers at points ri. Then the overlap area of exactly
n discs is given by the integral

Sn(r1, ..., rN )

=
∫

S

d2r
∑

{i1,...,in}⊂{i1,...,iN }

n∏
k=1

θ(a − |r − rik
|)

×
N∏

k=n+1

θ(|r − rik
| − a). (48)

The average of SN will be given by a multiple integral over
ri with the probability (47):

〈Sn〉 = 1
SN

0

∫
S0

N∏
i=1

d2riSn(r1, ..., rN )

= Cn
N

∫
S

d2rFn(r)(1 − F (r))N−n, (49)

where

F (r) = (1/S0)
∫

S0

d2r1θ(a − |r − r1|). (50)

The function S0F (r) gives an area occupied by a circle
C of radius a with a center at r which is inside the unit
circle S0. If r < 1− a, then C is always inside S0, so that

F (r) = σ0/S0, 0 < r < 1 − a. (51)

However, for r > 1−a a part of C turns out to be outside
the unit circle, and

F (r) = σ(r)/S0, 1 − a < r < 1 + a, (52)

where σ(r) ≤ σ0 is the overlap of the two discs C and S0.



M.A. Braun, C. Pajares: Percolation, multiplicities, 〈p2
T〉, and correlations 357

Generally, an overlap of two circles of radii r1 and r2
with a distance r between their centers is given by

σ(r1, r2, r) = (1/2)r2
1(α1 − sinα1)

+(1/2)r2
2(α2 − sinα2), (53)

where

cos(α1/2) =
1
2r1

(
r +

r2
1 − r2

2

r

)
,

cos(α2/2) =
1
2r2

(
r − r2

1 − r2
2

r

)
. (54)

The function σ(r) in (52) is just σ(1, a, r).
Formulas (49)–(54) allow one to calculate numerically

the average 〈Sn〉 for any finite value of N without much
difficulty.

In the thermodynamic limit N → ∞ where η is fixed,
the calculation of 〈Sn〉 becomes trivial. Indeed, then one
can neglect the part of integration in r with r > 1 − a
altogether, with an error ∼ 1/a ∼ 1/

√
N . With the same

precision, one then finds

〈Sn〉 = SCn
N (σ0/S)n(1 − σ0/S)N−n, (55)

where we have set S0 � S. The physically relevant values
of n remain finite as N → ∞. So we can approximately
take

Cn
N = Nn/n!, (1 − σ0/S)N−n = exp(−Nσ0/S). (56)

We then find that in the thermodynamic limit the distri-
bution of overlaps in n is Poissonian with the mean value
given by η (13).

Calculation of the multiplicity dispersion requires
knowledge of the average of its square. With the centers
of the discs at r1, ..., rN , it has the form

µ2(r1, ..., rN ) = (1/σ2
0)(
∑

n

√
nSn(r1, ..., rN ))2, (57)

where SN (r1, ..., rN ) is given by (48). Taking the average
over the discs’ center positions, we now come to a double
integral in r and r′:

〈µ2〉 = 1
σ2

0

∑
m,n

√
mn

∫
S

d2rd2r′ 1
SN

0

∫
S0

N∏
i=1

d2ri

∑
{i1,..in}⊂{1,...,N}

n∏
k=1

θ(a − |r − rik
|)

N∏
k=n+1

θ(|r − rik
| − a)

∑
{j1,...,jm}⊂{1,...,i}

m∏
l=1

θ(a − |r − rjl
|)

N∏
l=m+1

θ(|r − rjl
| − a).

(58)
This complicated expression, however, continues to be

factorized in all ri. Let us assume for the moment that
n ≥ m. We can always rename the variables ri to have in
the first sum r1, ..., rn as variables in the first product of θ
functions (and as a result, the rest of the N − n variables

rn+1, ..., rN go into the second product). We shall then
have Cn

N terms with the identical first sum. Now let p
variables in the first product of θ functions in it coincide
with p variables from the set r1, ..., rn. We have Cp

n of such
terms, which will evidently all have the same dependence
on the mentioned p variables. The leftm−p variables from
the first product of θ functions in the second sum do not
coincide with any variables r1, ..., rn, so they are chosen fro
variables rn+1, ..., rN . We shall have Cm−p

N−n various terms
of this sort. Thus the overall symmetry factor turns out
to be a multibinomial coefficient,

Cn
NCp

NCm−p
n−n =

N !
p!(n − p)!(m − p)!(n − n − m+ p)!

≡ Cp,n−p,m−p
N . (59)

This coefficient multiplies the result of integration over all
ri, i = 1, ..., N , which has the form (at fixed r and r′)

φp(r, r′)χn−p(r, r′)χm−p(r′, r)ζN−n−m+p(r, r′), (60)

where

φ(r, r′) = (1/S0)
∫

S0

θ(a − |r − r1|)θ(a − |r′ − r1|),

χ(r, r′) = (1/S0)
∫

S0

θ(a − |r − r1|)θ(|r′ − r1| − a)

= F (r) − φ(r, r′),

ζ(r, r′) = (1/S0)
∫

S0

θ(|r − r1| − a)θ(|r′ − r1| − a)

= 1 − F (r) − F (r′) + φ(r, r′), (61)

with F (r) defined before by (50). Of course one should
sum over all possible values of p.

Combining all the terms, we find the expression for the
average square of multiplicity as

〈µ2〉 = 1
σ2

0

∑
n,m,p

√
(n+ p)(n+ p),

Cn,m,p
N

∫
S

d2rd2r′φp(r, r′)χn(r, r′)

×χm(r′, r)ζN−n−m−p(r, r′). (62)

This expression is exact and may serve as a basis for
the calculation of the average square of the multiplicity
at finite N . However, the new function φ becomes very
complicated when both variables r and r′ are greater than
1− a (it is then given by the overlap area of three circles,
and we do not know any simple analytic expression for it).

For this reason rather than analyze the general ex-
pression (62) for finite N , we shall immediately take the
thermodynamic limit N → ∞. We are in fact interested in
the dispersion, not in the average square of multiplicity;
it is important, since the leading terms in N cancel in the
dispersion. So we shall study the difference

D2 = 〈µ2〉 − 〈µ〉2 (63)
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in the limit N → ∞, η finite. As we shall see, although
both terms in the right-hand side of (63) behave as N2

separately, their difference grows only as N .
Separating from (62) the term with p = 0 and com-

bining it with the second term on the right-hand side of
(63), we present the total dispersion squared as a sum of
two terms,

D2 = D2
1 +D2

2, (64)

where

D2
1 =

1
σ2

0

∑
n,m

√
nm

∫
S

d2rd2r′[Cn,m
N χn(r, r′)

×χm(r′, r)ζN−n−m(r, r′) − Cn
NCm

N Fn(r)FM (r′)

×(1 − F (r))N−n(1 − F (r′))N−m], (65)

and D2
2 is given by (62) with a restriction p ≥ 1.

Function S0φ(r, r′) gives the overlapping area of three
circles: The unit circle S0 and two circles C and C ′ of
radii a with centers at r and r′. It is evidently zero if
R = |r − r′| > 2a, since for such R, circles C and C ′
do not overlap. Because of this, in the part D2

2, which
has at least one factor φ, the integration in r and r′ is
restricted to the domain R < 2a, whereas in the part D2

1,
the integration covers the whole range of values of R.

We begin with the part D2
1. Splitting the integration

region in r and r′ in two parts, R > 2a and R < 2a, we
make use of (61) and present the first part as

D2
11 =

1
σ2

0

∑
n,m

√
nm

∫
R>2a

d2rd2r′Fn(r)Fm(r′)

×[Cn,m
N (1 − F (r) − F (r′))N−n−m − Cn

NCm
N

×(1 − F (r))N−n(1 − F (r′))N−m]. (66)

One notices immediately that the in the thermodynamic
limit the leading terms in the integrand (independent of
N) cancel, and only terms of the order 1/N remain. The
integration over r and r′ provides a factor ∝ N2 so that
the total contribution results ∝ N . To find this term, we
use that at large N , up to terms of the order 1/N2,

Cn
N =

Nn

n!

(
1 − n(n − 1)

2N

)
,

Cm,n
N =

Nn+m

n!m!

(
1 − (m+ n)(m+ n − 1)

2N

)
,

(1 − F )N−n = e−NF (1 + nF − NF 2/2),

where we have taken into account that F has order 1/N .
Then we obtain

D2
11 =

1
σ2

0

∑
n,m

√
nm

n!m!
Nn+m

×
∫

R>2a

d2rd2r′Fn(r)Fm(r′)

× exp(−N(F (r) + F (r′))
×(mF (r) + nF (r′) − NF (r)F (r′) − nm/N). (67)

The integrand is now explicitly of the order 1/N , so that
we can change the integration region to r, r′ < 1−a, since
the difference in the area will be of the order a2 ∼ 1/N ,
which results in the overall difference of the order 1/N2

and can safely be neglected. In the region r, r′ < 1−a, both
F (r) and F (r) are constants, given by (51). Integration
over r and r′ gives an overall factor S2, so that in the end,
we get

D2
11/N =

1
η2 e

−2η
∑
n,m

ηn+m

n!m!
√
nm[η(n+m) − η2 − nm]

= − (η〈√n〉 − 〈n√
n〉)2

η2 . (68)

In the last expression, the averages are to be taken over
the Poissonian distribution with the mean value η. The
part D2

11 is thus negative (and results are comparatively
small for all values of η).

In the second part of D2
1, the integration goes over a

small region R < 2a, of the order a2 ∼ 1/N , so that one
can retain only the leading terms in the integrand. Moving
to the integration over r and R, one observes that at fixed
r < 1 − a, the integration region over R covers the whole
region R < 2a. For r > 1 − a the integration region in
R becomes much more complicated, determined by the
condition r′ = |r+R| < 1 + a. However, the contribution
from the latter region will be of the order a3 ∼ 1/N

√
N ,

since apart from a factor ∝ a2 from the integration over
R, a factor ∝ a appears due to integration over r > 1− a.
Thus, up to terms of the relative order 1/

√
N , we can

neglect the contribution from the region r > 1 − a.
If r < 1 − a, the circle C is completely inside the unit

circle S0. Then its intersection with the circle C ′ is also
automatically inside S0. Therefore function S0φ(r, r) in
this region is simply given by the overlap of the circles C
and C ′, that is σ(a, a,R) defined by (53). We thus find

φ(r, r′) =
σ0

S
λ(R), (69)

where

λ(R) = (1/π)(α − sinα), α = 2arccos(R/2). (70)

Putting this into the expression for D2
12 and retaining the

leading terms in the limit N → ∞, we obtain

D2
12/N =

2
η
e−2η

∑
n,m

√
nm

n!m!
ηn+m

×
∫ 2

0
RdR[(1 − λ(R))n+meηλ(R) − 1]. (71)

This expression can be easily evaluated numerically. It is
relatively large and also negative.

We finally come to the part D2
2. The integration in

r, r′ goes over R < 2a, so that we can apply the same
approximations as made in calculating D2

12. We find

D2
2/N =

2
η
e−2η

∑
n,m

∑
p=1

√
(n+ p)(m+ p)

n!m!p!
ηn+m+p
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×
∫ 2

0
RdRλp(R)(1 − λ(R))n+meηλ(R). (72)

This part is evidently positive. Its numerical evaluation
shows that it nearly cancels the large negative contribu-
tions from D2

1 (in fact, four digits are canceled typically).
Thus the numerical calculation of the dispersion requires
some care.
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